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CHERN-SIMONS TERM
AT FINITE DENSITY AND TEMPERATURE

A.N.Sissakian, 0.Yu.Shevchenko', S.B.Solganik®

The Chern-Simons topological term dynamical generation in the effective action is
obtained at arbitrary finite density and temperature. By using the proper time method and

perturbation theory it is shown that at zero temperature pz = m? is the crucial point for Chern—
Simons term. So when uz <m2, p influence disappears and we get the usual Chern-Simons

term. On the other hand, when uz > m?, the Chern-Simons term vanishes because of nonzero
density of background fermions. In particular for massless case parity anomaly is absent at any
finite density or temperature. This result holds in any odd dimension both in Abelian and in
non-Abelian cases.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

JIuHamMHYecKas TreHepalHs YepPH-CaiMOHOBCKOTO WIeHa
IPH KOHEYHOH ILUIOTHOCTH H Temmeparype

A.H.Cucaxan, O.10.1llesuenxo, C.b.Conzanux

TMonyyen xoacppuumeHT NpH UePH-CaIMOHOBCKOM WieHe B athheKTHBHOM AeiCTBHH npH
TIPOH3BONIBHOM ILTOTHOCTH M Temiiepatype. IIpH HCMoNb30BAHUH MeTOa COBCTBEHHOTO BpeMeHH
M TEOPHH BO3MYILIEHHS TI0Ka3aHO, YTO u? = m? spasercs KPHTHYECKOH TOUKOH 1% WieHa YepH-
CaitmoHca IIpu HyneBoii Temmepatype. Tak, mpu p° < m* }-3aBHCHMOCTb HCHE3aET H NOJTyYaeT-
¢s1 OGbIYHBIH YepH-CcaiiMOHOBCKHIT WieH. [Ipu uz >m? 4epH-CaHMOHOBCKHI WIEH HCYE3aeT H3-3a
HEHY/ICBOH TUIOTHOCTH (POHOBBIX 2MEKTPOHOB. B uacTHOCTH, Mis Ge3MaccoBoro ciyyas aHo-
MaJis 4ETHOCTH OTCYTCTBYET NpH JioGOH HeHy/eBoii IIOTHOCTH WM Temnepartype. TTomyuen-
HBIH PE3YITLTAT CNIPaBEATHB B NI000H HEYETHOMEPHOI Pa3MEPHOCTH KaK [Uia abenesa, TaK H JUls
HealeneBa cyyad.

Pa6ota BemonHena B JlaGopaTopuu saepHsix npotiaem OUSIH.

Since introduction of the Chern-Simons (CS) topological term [1] and by now, the
great number of papers devoted to it appeared. Such interest is explained by variety of
significant physical effects caused by CS secondary characteristic class. These are, for
example, gauge particles mass appearance in quantum field theory, applications to condense

le-mail: shevch@nusun jinr.ru
¢-mail: solganik@thsunl jinr.ru



52 Sissakian A.N. et al. Chern-Simons Term at Finite

matter physics such as the fractional quantum Hall effect and high T_ superconductivity,

possibility of free of metric tensor theory construction and so on.

It was shown [2—4] in a conventional zero density gauge theory, that the CS term is
generated in the Eulier—Heisenberg effective action by quantum corrections. The main goal
of this paper is to explore the parity anomalous CS term generation at finite density. In the
excellent paper by Niemi [5] it was emphasized that the charge density at | # 0 becomes a
nontopological object, i.e., contains as topological part so as nontopological one. The
charge density at g #0 (nontopological, neither parity-odd nor parity-even object)* in
QEDs3 at finite density contains as well parity-odd part corresponding to CS term so as
parity even part, which cannot be covariantized and does not contribute to the mass of the
gauge field. Here we are interested in effect of finite density influence on covariant parity-
odd form in action leading to the gauge field mass generation — CS topological term. Deep
insight on this phenomena at small densitied was done in [5,7]. The result for CS term

coefficient in QED3 1s { th % B(m— ) +th % B(m + u)] (see [7], formulas (11.18)). However,

to get this result it was heuristically supposed that at small densities index theorem could
still be used and only odd in energy part of spectral density is responsible for parity
nonconserving effect. Because of this in [7] it had been stressed that the result holds only
for small . However, as we’ll see below this result holds for any values of chemical
potential. Thus, to obtain trustful result at any values of p one has to use transparent and
free of any restrictions on p procedure, which would allow to perform calculations with
arbitrary non-Abelian background gauge fields.

Since the chemical potential term p.\Trf)\y is odd under charge conjugation we can
expect that it would contribute to P and CP nonconserving quantity — CS term. As we will
see, this expectation is completely justified.

The zero density approach usually is a good quantum field approximation when the
chemical potential is small as compared with characteristic energy scale of physical
processes. Nevertheless, for investigation of topological effects it is not the case. As we will
see below, even a small density could lead to principal effects.

Introduction of a chemical potential 1 in a theory corresponds to the presence of a
nonvanishing background charge density. So, if p > 0, then the number of particles exceeds
that of antiparticles and vice versa. It must be emphasized that the formal addition of a
chemical potential looks like a simple gauge transformation with the gauge function ptr.
However, it doesn’t only shift the time component of a vector potential but also gives
corresponding prescription for handling Green’s function poles. The correct introduction of
a chemical potential redefines the ground state (Fermi energy), which leads to a new spinor
propagator with the correct €-prescription for poles. So, for the free spinor propagator we
have (see, for example, [8,9])

Gy =—"— )
(p0+t£sgnp0) -p"—m

B+m

5, (1)

*For abbreviation, speaking about parity invariance properties of local objects, we will keep in mind symmetries
of the corresponding action parts.
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where p = (py + 1, p). Thus, when u =0, one at once gets the usual €-prescription because
of the positivity of p,sgn py- In the presence of a background Yang-Mills field we

consequently have for the Green function operator

1
()" — m” + ie(py + 1) sgn ()
where T, =7 +ud ; T = p, - 8A ().

G = (it — m) @

Let’s first consider a (2 + 1) dimensional Abelian case and choose the background field
in the form

At = % xVF VH o FYH=Const.

To obtain the CS term in this case, it is necessary to consider the background current

e\
By _ eff
(7= 3A
1s

rather than the effective action itself. This is because the CS term formally vanishes for

such the choice of A" but its variation with respect to A* produces a nonvanishing current.

. So, consider

(IMy=—ige [Y*Gx, 1 __, ., 3)
where

G(x, x')=exp[»—ig j dg A (©) (x|Glx). @)

Let’s rewrite Green function (2) in a more appropriate form

G=(m-m

A { 8((py+ 1) sgn (py))  B(=(p, + 1) sgn (p)) }
+ . &)

() - m? + ig (2 - m? —ie

Now, we use the well-known integral representation of denominators

azi- T! f ds €%,
- 0

which corresponds to introducing the «proper-time» s into the calculation of the Eulier—
Heisenberg Lagrangian by the Schwinger method [10]. We obtain

G= (it~ m)|~i [ ds exp Gl = m+ ie))8((p, + ) sgn (pg) +
0

+i | ds exp (<isl(OR) - m” - i€])B(~(p, + 1) sgn () | - (6)
0
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For simplicity, we restrict ourselves only to the magnetic field case, where A,=0,

(7, 1"6“] =0. Then we easily can factorize the time dependent part of Green function

G(x, ¥) = I_LG ip(x = x') _ J___E_Gx ip(x ~ x)J' POG e'p(x _x) o
2y’ @2n)?
By using the obvious relatlon
1
(Yn) —(PO'HJ) - +5 80, F¥ (8)

one gets

= L2 2 a2
- J' o > (Yﬁ _ m)J' d:[ e|s(p0—m ) oIS exsch/Z _
(2 0
’ . LN I e I N T
_ 9(‘(1’0 +11) sgn (p()))( e\s(po -m’) oISt exsgoF/Z + e—ls(po— m’) ST e—xsch/Z)] ) )

Here the first term corresponds to the usual p-independent case and there are two additional
H-dependent terms. In the calculation of the current the following trace arises:

tr [w(w"i -m) engO‘F/z] =

V- uv o
=21tng“cos(gl'F|s)+2n|f;‘| sin (g1 *Fls) - 2im lfFl sin (2| *Fs),

where “F ¥ = e“aBF / 2and |'F| =VB® . Since we are interested in calculation of the

parity odd part (CS term) it is enough to consider only terms proportional to the dual

strength tensor “FY. On the other hand, the term 2n¥g" cos (g | 'F Is) at v=0 (see
expression for the trace, we take in mind that here there is only magnetic field) also gives

nonzero contribution to the current J? s [6].

22
bt et otui

This part of current is parity invariant because under parity B — —B. It is clear that this
parity-even object does contribute neither to the parity anomaly nor to the mass of the
gauge field. Moreover, this term has been obtained [6] in the pure magnetic background and
scalar magnetic field occurs in the argument’s denominator of the cumbersome function —
integer part. So, the parity even term seems to be «noncovariantizable», i.e., it cannot be
converted in covariant form in effective action. For a parity, in papers [6] charge density
consisting of both parity-odd and parity-even parts is dubbed CS, what leads to
misunderstanding. The main goal of this paper is to explore the parity anomalous
topological CS term in the effective action at finite density. So, just the term proportional

to the dual strength tensor "F " will be considered. The relevant part of the current reads

¥ —ifdpoj'(;"z‘; { ds ZIImFFl sin (g "Floy| 5 -m) ¢
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. 2 2 .2 . 2 2, .2
= 8y + 1) 5 (pp){ 3o ) ¢ _ ¢y ) g ﬂ (1n

Evaluating two-momentum integral we derive

< .2 2., . 2 2 . =2 2

I ds [e‘s(po -m)_ 8(-p, sgn (po))(els(po mm); gisPy - m ))] (12)
0
Thus, we get besides the usual CS part 3], also the u-dependent one. It is easy to calculate
it by the use of the formula

2 +oo
n —o0

2 . 2 2 ;
jdse‘s(x 'm)=n(8(x2—m2)+éP—2 1 2]

0 X —m

and we get eventually

2
T = o £ TP ¥ [1 - B(—m -+ ) sgn (m) — 8(~(m — ) sgn (m)] =

=T%—9(m2—-},l2) f;— FH (13)
Let’s now discuss the non-Abelian cése. Then A" = T,AY% in (2) and
(JFy=—ig u[wTaG(x, x’)}x_)x,.
It is well known [3,11] that there exist only two types of the constant background fields.

The first is the «Abelian» type (it is easy to see that the self-interaction f abcAgA‘: disappears
under that choice of the background field)

1
Al=m,5xF" (14)

where N is an arbitrary constant vector in the color space, F YH = Const. The second is the
pure «non-Abelian» type

A" = Const. (15)
Here the derivative terms (Abelian part) vanish from the strength tensor and it contains only
the self-interaction part F 5V= gf abcA’;A‘:. It is clear that to catch Abelian part of the CS

term we should consider the background field (14), whereas for the non-Abelian (derivative
noncontaining, cubic in A) part we have to use the case (15).
Calculations in the «Abelian» case reduce to the previous analysis, except the trivial

adding of the color indices in formula (13):

2
Th=Tor e’ -t (16)
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In the case (15) all calculations are similar. The only difference is that the origin of term

. F" in (8) is not the linearity A in x (as in Abelian case) but the pure non-Abelian

uv
A" = Const. Here term G F H¥ in (8) becomes quadratic in A and we have
17)

x»:“‘"‘3 tr [T,4%P).

T*—T'G(nl - )

Combining formulas (16) and (17) and integrating over field A" we obtain eventually
(18)

Seit =Ty T 00m” = 1mMA,

where W[A] is the CS term

2 2
WiA] =£? [ vt (FuVAa 3 gAuAvAa]
This result can be obtained also with an arbitrary initial field configuration by the use
of the perturbative expansion. Here we work at once in the non-Abelian case.
Let’s first consider non-Abelian 3-dimen-
sional gauge theory. The only graphs whose
P-odd parts contribute to the parity anomalous

NN

CS term are shown in Fig.1.

Fig.1. Graphs whose P-odd parts contribute to the CS

(b) term in non-Abelian 3D gauge theory

(a)
So, the part of effective action containing the CS term looks as
[ 4,0 | e™a@ne)+

lcs_l

eff —
(19)

2 faw@ [ X0 pa I, n,

x p.r
where polarization operator and vertices have a standard form

Me) =g® | o (¥S(p + k; Wy’ Stk; )]
k
W =g [ (S + r+ ks Wy S(r + ks YESCh: )] (20)

k
here the following notation is used j j dx J'dx and I J —2 First consider the
2n)

X
second order term (Fig.1, graph (a)). It is well known that the only object giving us the
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possibility to construct P and T odd form in action is Levi-Chivita tensor*. Thus, we will
. drop all terms noncontaining Levi—Chivita tensor. Signal for the mass generation (CS term)

is TT*(p* =0) % 0. So we get

M =g? [ (-izmehop ) ——. (21)
k , ( +m")
After some simple algebra one obtains
k1
o =-i2mg’e""%p ———=-i2mg’"% , (22)
g “BZI(Zn)(k+ 22 8 “3247‘2
where ® =2n+1)n / B+ il Performing summation we get
2
v _; & ghvay 1
M =i & o Bm) By /b (B (23)
It is easily seen that at § — oo limit we’ll get zero temperature result [12]
me=; -2 g V% _8(m” — ). 24)
|m| 4m
In the same manner handling the third order contribution (Fig.15) one gets
va VoL l d2k mi ;(—2+m2
™ = g%k 2 | £x J——l
(21t) (Ihc‘Z +m
=—i2mg euva 2 J &k 1 (25)
@n)? ( +m m)?’
and further all calculations are identical to the second order
3
pvo _ - 87 pva 1
a P B T By ek (B (26)

Substituting (23), (26) in the effective action (19) we get eventually

1 3 va
1 +ch (Bm)/ch (Bm) 8xn J’ &'xet (A O Ay~ 3 8A J 27)

Thus, we get CS term with temperature and density dependent coefficient.
Let’s now consider 5-dimensional gauge theory. Here the Levi—Chivita tensor is

I chfS =th (Bm)

5-dimensional € *Y*®Y and the relevant graphs are shown in Fig.2.
The part of the effective action containing CS term reads

155 =3 I A | PO )4 (T, +
pr

*In three dimensions it arises as a trace of three y matrices (Pauli matrices).
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AYAVAY]

™,

(a) (b) (c)

Fig.2. Graphs whose P-odd parts contribute to the CS term in non-Abelian 5D
theory

+% J’ Ap(x) J eiX(P+r +S)AV(P)Aa(’)Aﬁ(s)H pvap .18+ (28)

x p.r

1 —ix(p+r+s+q) : pvopy
g Jam [ e A PALDALSA () T (b, 1, 5, ).
x p.r
All calculations are similar to 3-dimensional case. First consider third order contribution
(Fig.2a).

M8, =g [ iy S+ r+k wn'Sr+ ks Wy*see: wi. (29)
k
Taking into account that trace of five ¥ matrices in 5-dimensions is

tr [y My Oy Py P) = 4igh VPP,

we extract the parity odd part of the vertices

nmwve=g32 (z4me“"““° r )——1 (30)
ﬁE_J @ny P'o @ + m??
or in more transparent way
d*k 1
%= idmg Sghv aﬂo =
“°B 2 I(21:) @+ K +m)’
= idmgehveBo, i 31)
aoc B 6411:2 0) +m?
Evaluating summation one comes to
3
. 1 g vapo
n*¥%=ith Bm et r. (32)
B o B /h B 162 ° Pao

Operating graphs (b) and (c) (Fig.2) in the same way one w1ll obtain

uvap _ 1 _8_ pvopo
n =i th (Bm) T+ ch (B) /b (Bm) g2 I3 Sg (33)
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1 8 uvafo 34
T+ch Bu)/ch Bm) 1622 ° G4

Substituting (32)—(34) in the effective action (28) we get the final result for CS in 5-
dimensional theory

Y= th (Bm)

; 3
CS. _.; 1 g wvofy
1 =it B T T o gt ) &
3 39
x tr (AuavAaébAy+ SEAAAIA +3 FAAAAA Y). (35)

It is remarkable that all parity odd contributions are finite as in 3-dimensional so as in
5-dimensional cases. Thus, all values in the effective action are renormalized in a standard
way, i.e., the renormalizations are determined by conventional (parity even) parts of
vertices.

From the above direct calculations it is clearly seen that the chemical potential and
temperature dependent coefficient is the same for all parity-odd parts of diagrams and
doesn’t depend on space dimension. So, the influence of finite density and temperature on
CS term generation is the same in any odd dimension:

1 poe

I+ ch (B)/ch (Bm) "AI—

_m_

155 = th (Bm) om® —uHWIAL,  (36)

eff |m|
where WIA] is the CS secondary characteristic class in any odd dimension. Since only the
lowest orders of perturbative series contribute to CS term at finite density and temperature
(the same situation is well known at zero density), the result obtained by using formally
perturbative technique appears to be nonperturbative. Thus, the p-dependent CS term
coefficient reveals the amazing property of universality. Namely, it does not depend on
either dimension of the theory or Abelian or non-Abelian gauge theory is studied.

The arbitrariness of p gives us the possibility to see CS coefficient behaviour at any

masses. It is very interesting that u2 =m? is the crucial point for CS at zero temperature.
Indeed, it is clearly seen from (36) that when u3 < m2, M influence disappeaars and we get

the usual CS term [/ gffs ‘=W [A]. On the other hand, when u2>m2, the situation is
absolutely different. One can see that here the CS term disappears because of nonzero
density of background fermions. We'd like to emphasize the important massless case
m =0 considered in [7]. Then even negligible density or temperature, which always take
place in any physical processes, lead to vanishing of the parity anomaly. Let us stress again
that we nowhere have used any restrictions on {. Thus we not only confirm result in [7]

for CS in QED3 at small density, but also expand it on arbitrary i, non-Abelian case and
arbitrary odd dimension.

In conclusion we’d like to emphasize that nevertheless there is connection between
chiral anomaly and CS term at zero density due to trace identities, at finite density this
connection is loosed. That is because of different nature of these objects. The chiral
anomaly is an effect of regularization, but the chemical potential doesn’t introduce new
divergence in a theory. So it doesn’t effect on chiral anomaly. On the other hand, CS term
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is essentially an effect of the finite part of the theory. So as we’ve seen finite density and
temperature plays a crucial role in CS term generation.
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